4.7 Article

Phylogeny of hydradephagan water beetles inferred from 18S rRNA sequences

Journal

MOLECULAR PHYLOGENETICS AND EVOLUTION
Volume 23, Issue 1, Pages 43-62

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1006/mpev.2001.1080

Keywords

-

Ask authors/readers for more resources

Several families in the beetle suborder Adephaga have an aquatic life style and are commonly grouped in the Hydradephaga, but their monophyly is contentious and relationships between and within these families are poorly understood. Here we present full-length 18S rRNA sequence for 84 species of Hydradephaga, including representatives of most major groups down to the tribal level, and a total of 68 species of the largest family, Dytiscidae. Using a direct optimization method for the alignment of length-variable regions, the preferred tree topology was obtained when the cost of gaps and the cost of nucleotide changes were equal, and three hypervariable regions of 18S rRNA were downweighted by a factor of five. Confirming recent molecular studies, the Hydradephaga were found to be monophyletic, indicating a single colonization of the aquatic medium. The most basal group within Hydradephaga is Gyrinidae, followed in a comb-like arrangement by families Haliplidae, Noteridae, Amphizoidae, and Hygrobiidae plus Dytiscidae. Under most alignment parameters, Hygrobiidae is placed amid Dytiscidae in an unstable position, suggesting a possible data artifact. Basal relationships within Dytiscidae are not well established, nor is the monophyly of subfamilies Hydroporinae and Colymbetinae. In contrast, relationships at the genus level appear generally well supported. Despite the great differences in the rates of change and the significant incongruence of the phylogenetic signal in conserved vs hypervariable regions of the 18S rRNA gene, both contribute to establish relationships at all taxonomic levels. (C) 2002 Elsevier Science (USA).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available