4.6 Article

Comparison of atomic-level simulation methods for computing thermal conductivity

Journal

PHYSICAL REVIEW B
Volume 65, Issue 14, Pages -

Publisher

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevB.65.144306

Keywords

-

Ask authors/readers for more resources

We compare the results of equilibrium and nonequilibrium methods to compute thermal conductivity. Using Sillinger-Weber silicon as a model system, we address issues related to nonlinear response, thermal equilibration, and statistical averaging. In addition, we present an analysis of finite-size effects and demonstrate how reliable results can be obtained when using nonequilibrium methods by extrapolation to an infinite system size. For the equilibrium Green-Kubo method, we show that results for the thermal conductivity are insensitive to the choice of the definition of local energy from the many-body part of the potential. Finally, we show that the results obtained by the equilibrium and nonequilibrium methods are consistent with each other and for the case of Si are in reasonable agreement with experimental results.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available