4.7 Article

Changes in the sugar composition and molecular mass distribution of matrix polysaccharides during cotton fiber development

Journal

PLANT AND CELL PHYSIOLOGY
Volume 43, Issue 4, Pages 411-418

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/pcp/pcf048

Keywords

cell wall; cotton fiber; elongation; matrix polysaccharides; molecular mass; Gossypium herbaceum

Ask authors/readers for more resources

Cotton (Gossypimn herbaceum L.) fiber development consists of a fiber elongation stage (up to 20 d post-anthesis) and a subsequent cell wall thickening stage. Cell wall analysis revealed that the extractable matrix (pectic and hemicellulosic) polysaccharides accounted for 30-50% of total sugar content in the fiber elongation stage but less than 3% in the cell wall thickening stage. By contrast, cellulose increased dramatically after the fiber elongation ceased. The amounts of extractable xyloglucans and arabinose- and galactose-containing polymers per seed increased in the early fiber elongation stage and decreased thereafter. The amounts of extractable acidic polymers and non-cellulosic beta-glucans (mainly composed of beta-1,3-glucans) increased in parallel with fiber elongation and then decreased. The molecular masses of extractable non-cellulosic beta-glucans, and arabinose- and galactose-containing polymers decreased during both fiber elongation and cell wall thickening stages. The molecular mass of extractable xyloglucans also decreased during the fiber elongation stage, but this decrease ceased during the cell wall thickening stage. Conversely, the molecular size of acidic polymers in the extractable pectic fraction increased during both stages. Thus, not only the amounts but also the molecular size of the extractable matrix polysaccharides showed substantial changes during cotton fiber development.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available