4.7 Article

Dissipative particle dynamics study of spontaneous vesicle formation of amphiphilic molecules

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 116, Issue 13, Pages 5842-5849

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1456031

Keywords

-

Ask authors/readers for more resources

A dissipative particle dynamics (DPD) simulation has been used to study the spontaneous vesicle formation of amphiphilic molecules in aqueous solution. The amphiphilic molecule is represented by a coarse-grained model, which contains a hydrophilic head group and a hydrophobic tail. Water is also modeled by the same size particle as adopted in the amphiphile model, corresponding to a group of several H2O molecules. In the DPD simulation, from both a randomly dispersed system and a bilayer structure of the amphiphile for the initial condition, a spontaneous vesicle formation is observed through the intermediate state of an oblate micelle or a bilayer membrane. The membrane fluctuates and encapsulates water particles and then closes to form a vesicle. During the process of vesicle formation, the hydrophobic interaction energy between the amphiphile and water is diminishing. It is also recognized that the aggregation process is faster in two-tailed amphiphiles than those in the case of single-tailed ones. (C) 2002 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available