4.5 Article

Nuclear ground state observables and QCD scaling in a refined relativistic point coupling model -: art. no. 044308

Journal

PHYSICAL REVIEW C
Volume 65, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevC.65.044308

Keywords

-

Ask authors/readers for more resources

We present results obtained in the calculation of nuclear ground-state properties in relativistic Hartree approximation using a Lagrangian whose QCD-scaled coupling constants are all natural (dimensionless and of order one). Our model consists of four-, six-, and eight-fermion point couplings (contact interactions) together with derivative terms representing, respectively, two-, three-, and four-body forces and the finite ranges of the corresponding mesonic interactions. The coupling constants have been determined in a self-consistent procedure that solves the model equations for representative nuclei simultaneously in a generalized nonlinear least-squares adjustment algorithm. The extracted coupling constants allow us to predict ground-state properties of a much larger set of even-even nuclei to good accuracy. The fact that the extracted coupling constants are all natural leads to the conclusion that QCD scaling and chiral symmetry apply to finite nuclei.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available