4.8 Article

Atomic-scale images of charge ordering in a mixed-valence manganite

Journal

NATURE
Volume 416, Issue 6880, Pages 518-521

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/416518a

Keywords

-

Ask authors/readers for more resources

Transition-metal perovskite oxides exhibit a wide range of extraordinary but imperfectly understood phenomena. The best known examples are high-temperature superconductivity in copper oxides(1), and colossal magnetoresistance in manganese oxides ('manganites')(2,3). All of these materials undergo a range of order-disorder transitions associated with changes in charge, spin, orbital and lattice degrees of freedom. Measurements of such order are usually made by diffraction techniques, which detect the ionic cores and the spins of the conduction electrons. Unfortunately, because such techniques are only weakly sensitive to valence electrons and yield superpositions of signals from distinct submicrometre-scale phases, they cannot directly image phase coexistence and charge ordering, two key features of the manganites. Here we present scanning tunnelling microscope measurements of the manganite Bi1-xCaxMnO3. We show that charge ordering and phase separation can be resolved in real space with atomic-scale resolution. By taking together images and current-voltage spectroscopy data we find that charge order correlates with both structural order and the local conductive state (either metallic or insulating). These experiments provide an atomic-scale basis for descriptions(4) of manganites as mixtures of electronically and structurally distinct phases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available