4.7 Review

REVEL: A model for Recent plate velocities from space geodesy

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH
Volume 107, Issue B4, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2000JB000033

Keywords

plate tectonics; geodesy; GPS; global plate model; present-day; REVEL

Ask authors/readers for more resources

[1] We present a new global model for Recent plate velocities, REVEL, describing the relative velocities of 19 plates and continental blocks. The model is derived from publicly available space geodetic (primarily GPS) data for the period 1993-2000. We include an independent and rigorous estimate for GPS velocity uncertainties to assess plate rigidity and propagate these uncertainties to the velocity estimates. The velocity fields for North America, Eurasia, and Antarctica clearly show the effects of glacial isostatic adjustment, and Australia appears to depart from rigid plate behavior in a manner consistent with the mapped intraplate stress field. Two thirds of tested plate pairs agree with the NUVEL-1A geologic (3 Myr average) velocities within uncertainties. Three plate pairs (Caribbean-North America, Caribbean-South America, and North America-Pacific) exhibit significant differences between the geodetic and geologic model that may reflect systematic errors in NUVEL-1A due to the use of seafloor magnetic rate data that do not reflect the full plate rate because of tectonic complexities. Most other differences probably reflect real velocity changes over the last few million years. Several plate pairs (Arabia-Eurasia, Arabia-Nubia, Eurasia-India) move more slowly than the 3 Myr NUVEL-1A average, perhaps reflecting long-term deceleration associated with continental collision. Several other plate pairs, including Nazca-Pacific, Nazca-South America and Nubia-South America, are experiencing slowing that began similar to25 Ma, the beginning of the current phase of Andean crustal shortening.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available