4.7 Article

Non-breaking and breaking solitary wave run-up

Journal

JOURNAL OF FLUID MECHANICS
Volume 456, Issue -, Pages 295-318

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0022112001007625

Keywords

-

Ask authors/readers for more resources

The run-up of non-breaking and breaking solitary waves on a uniform plane beach connected to a constant-depth wave tank was investigated experimentally and numerically. If only the general characteristics of the run-up process and the maximum run-up are of interest, for the case of a breaking wave the post-breaking condition can be simplified and represented as a propagating bore. A numerical model using this bore structure to treat the process of wave breaking and subsequent shoreward propagation was developed. The nonlinear shallow water equations (NLSW) were solved using the weighted essentially non-oscillatory (WENO) shock capturing scheme employed in gas dynamics. Wave breaking and post-breaking propagation are handled automatically by this scheme and ad hoc terms are not required. A computational domain mapping technique was used to model the shoreline movement. This numerical scheme was found to provide a relatively simple and reasonably good prediction of various aspects of the run-up process. The energy dissipation associated with wave breaking of solitary wave run-up (excluding the effects of bottom friction) was also estimated using the results from the numerical model.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available