4.8 Article

Chondroitinase ABC promotes functional recovery after spinal cord injury

Journal

NATURE
Volume 416, Issue 6881, Pages 636-640

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/416636a

Keywords

-

Ask authors/readers for more resources

The inability of axons to regenerate after a spinal cord injury in the adult mammalian central nervous system (CNS) can lead to permanent paralysis. At sites of CNS injury, a glial scar develops, containing extracellular matrix molecules including chondroitin sulphate proteoglycans (CSPGs)(1,2). CSPGs are inhibitory to axon growth in vitro(3-5), and regenerating axons stop at CSPG-rich regions in vivo(6). Removing CSPG glycosaminoglycan (GAG) chains attenuates CSPG inhibitory activity(7-10). To test the functional effects of degrading chondroitin sulphate (CS)-GAG after spinal cord injury, we delivered chondroitinase ABC (ChABC) to the lesioned dorsal columns of adult rats. We show that intrathecal treatment with ChABC degraded CS-GAG at the injury site, upregulated a regeneration-associated protein in injured neurons, and promoted regeneration of both ascending sensory projections and descending corticospinal tract axons. ChABC treatment also restored post-synaptic activity below the lesion after electrical stimulation of corticospinal neurons, and promoted functional recovery of locomotor and proprioceptive behaviours. Our results demonstrate that CSPGs are important inhibitory molecules in vivo and suggest that their manipulation will be useful for treatment of human spinal injuries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available