4.6 Article

Biogenesis of p53 involves cotranslational dimerization of monomers and posttranslational dimerization of dimers - Implications on the dominant negative effect

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 277, Issue 15, Pages 12937-12945

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M108815200

Keywords

-

Ask authors/readers for more resources

Precisely how mutant p53 exerts a dominant negative effect over wild type p53 has been an enigma. To understand how wild type and mutant p53 form hetero-oligomers, we studied p53 biogenesis in vitro. We show here that p53 dimers are formed cotranslationally (on the polysome), whereas tetramers are formed posttranslationally (by the dimerization of dimers in solution). Coexpression of wild type and mutant p53 therefore results in 50% of the p53 generated being heterotetramers comprised of a single species: wild type dimer/mutant dimer. Using hot spot mutants of p53 and a variety of natural target sites, we show that all wild type/mutant heterotetramers manifest impaired DNA binding activity. This impairment is not due to the mutant dimeric subunit inhibiting association of the complex with DNA but rather due to the lack of significant contribution (positive cooperativity) from the mutant partner. For all heterotetramers, bias in binding is particularly pronounced against those sequences in genes responsible for apoptosis rather than cell growth arrest. These results explain the molecular basis of p53 dominant negative effect and suggest a functional role in the regulation of p53 tetramerization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available