4.6 Article

Nanoindentation-induced deformation of Ge

Journal

APPLIED PHYSICS LETTERS
Volume 80, Issue 15, Pages 2651-2653

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1469660

Keywords

-

Ask authors/readers for more resources

The deformation mechanisms of crystalline (100) Ge were studied using nanoindentation, cross sectional transmission electron microscopy (XTEM) and Raman microspectroscopy. For a wide range of indentation conditions using both spherical and pointed indenters, multiple discontinuities were found in the force-displacement curves on loading, but no discontinuities were found on unloading. Raman microspectroscopy, measured from samples which had plastically deformed on loading, showed a spectrum shift from that in pristine Ge, suggesting only residual strain. No evidence (such as extra Raman bands) was found to suggest that any pressure-induced phase transformations had occurred, despite the fact that the material had undergone severe plastic deformation. Selected area diffraction pattern studies of the mechanically damaged regions also confirmed the absence of additional phases. Moreover, XTEM showed that, at low loads, plastic deformation occurs by twinning and dislocation motion. This indicates that the hardness of Ge measured by indentation is not primarily dominated by phase transformation, rather by the nucleation and propagation of twin bands and/or dislocations. (C) 2002 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available