4.7 Article

Revival structures in picosecond laser-induced alignment of I2 molecules.: I.: Experimental results

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 116, Issue 15, Pages 6567-6578

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1458537

Keywords

-

Ask authors/readers for more resources

We report experiments on the formation of wave packets consisting of coherently excited ground electronic state rotational levels of I-2, using excitation with an intense nonresonant picosecond laser. As measured in a velocity-map-imaging experiment using Coulomb explosion for the determination of the angular distribution of the molecules, these wave packets display alignment of the internuclear axis along the laser polarization axis, both during the laser interaction and at well-defined time delays following the laser interaction, which correspond to rotational revival times of the molecule. The alignment is studied as a function of the intensity and the pulse duration of the pump laser, the rotational temperature of the molecular beam, the polarization geometry of the pump and probe lasers, and the fragment-ion-charge state used to probe the alignment. We observe experimentally that the alignment at revival times is maximal for intermediate pulse durations of a few picoseconds, where the laser-molecule interaction is neither diabatic nor adiabatic. The alignment increases with intensity, but reaches saturation once the intensity is raised sufficiently high. At this point the degree of alignment is limited by the initial rotational temperature of the molecular beam. Our conclusions are corroborated by model calculations, which are presented in detail in the following paper. (C) 2002 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available