4.8 Article

Electrical detection of spin precession in a metallic mesoscopic spin valve

Journal

NATURE
Volume 416, Issue 6882, Pages 713-716

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/416713a

Keywords

-

Ask authors/readers for more resources

To study and control the behaviour of the spins of electrons that are moving through a metal or semiconductor is an outstanding challenge in the field of 'spintronics', where possibilities for new electronic applications based on the spin degree of freedom are currently being explored(1-5). Recently, electrical control of spin coherence(6) and coherent spin precession during transport(7) was studied by optical techniques in semiconductors. Here we report controlled spin precession of electrically injected and detected electrons in a diffusive metallic conductor, using tunnel barriers in combination with metallic ferromagnetic electrodes as spin injector and detector. The output voltage of our device is sensitive to the spin degree of freedom only, and its sign can be switched from positive to negative, depending on the relative magnetization of the ferromagnetic electrodes. We show that the spin direction can be controlled by inducing a coherent spin precession caused by an applied perpendicular magnetic field. By inducing an average precession angle of 180degrees, we are able to reverse the sign of the output voltage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available