4.3 Article

Spatiotemporal image-fusion model for enhancing the temporal resolution of Landsat-8 surface reflectance images using MODIS images

Journal

JOURNAL OF APPLIED REMOTE SENSING
Volume 9, Issue -, Pages -

Publisher

SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
DOI: 10.1117/1.JRS.9.096095

Keywords

heterogeneous land cover; remote sensing; semiarid regions; spatiotemporal image-fusion model; spectral bands of red; near-infrared; shortwave infrared

Funding

  1. Yarmouk University in Jordan
  2. National Sciences and Engineering Research Council of Canada

Ask authors/readers for more resources

Our aim was to evaluate a spatiotemporal image-fusion model (STI-FM) for enhancing the temporal resolution (i. e., from 16 to 8 days) of Landsat-8 surface reflectance images by utilizing the moderate-resolution imaging spectroradiometer (MODIS) images, and assess its applicability over a heterogeneous agriculture dominant semiarid region in Jordan. Our proposed model had two major components: (i) establishing relationships between two 8-day MODIS composite images acquired at two different times (i.e., time 1 and time 2); and (ii) generating synthetic Landsat-8 surface reflectance images at time 2 as a function of Landsat-8 images available at time 1 and the relationship constructed in the first component. We evaluated the synthetic images with the actual Landsat-8 images and observed strong relations between them. For example: the coefficient of determination (r(2)) was in the range: (i) 0.72 to 0.82; (ii) 0.71 to 0.79; and (iii) 0.78 to 0.83; for red, near-infrared (NIR), and shortwave infrared (SWIR2.2 mu m) spectral bands, respectively. In addition, root mean square error (RMSE) and absolute average difference (AAD) values were: (i) in between 0.003 and 0.004, and 0.0002, respectively, for red band; (ii) 0.005 and 0.0003, respectively, for NIR band; and (iii) 0.004 and in between 0.0001 and 0.0002, respectively, for SWIR2.2 mu m band. The developed method would be useful in understanding the dynamics of environment issues (e.g., agriculture drought and irrigation management), which require both relatively high spatial (i.e., 30 m) and high temporal resolution (i.e., 8 days) images. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available