4.7 Article

Erk 1/2 differentially regulates the expression from the 1G/2G single nucleotide polymorphism in the MMP-1 promoter in melanoma cells

Journal

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0925-4439(01)00105-3

Keywords

activator protein-1; avian erythroblastosis twenty six (ETS); polymoma enhancer activator 3 (PEA3); mitogen-activated protein kinase; collagenase

Funding

  1. NCI NIH HHS [R01 CA077267, CA-77267] Funding Source: Medline
  2. NIAMS NIH HHS [AR-46977, AR-26599, R01 AR046977, R01 AR026599, AR-02024] Funding Source: Medline

Ask authors/readers for more resources

Matrix metalloprotemase-1 (MMP-1) breaks down interstitial collagens, a major component of stromal tissue and a barrier for invading tumor cells. The degradation of collagen by MMP-1 may, therefore, provide one mechanism for facilitating tumor invasion and metastasis. Because of the potential for excessive matrix degradation, the expression of MMP-1 is tightly regulated, often by the mitogen-activated protein kinase (MAPK) pathway. The MAPK signal cascade consists of three separate pathways, the extracellular response kinase (ERK), p38 and Jun N-terminal kinase, which target proteins of the AP-1 and ETS families transcription of the gene. The MMP-1 promoter contains a single nucleotide polymorphism (SNP) at -1607 bp, which creates an ETS binding site by the addition of a guanine (5'-GGAT-3' or '2G SNP') compared to the 1G SNP (51-GAT-3'), and enhances MMP-1 transcription. A2058 melanoma cells represent one tumor cell line that is homozygous for the 2G allele and that produces constitutively high levels of MMP-1. Thus, we used these cells to define the mechanism(s) responsible for this high level of expression. We show that inhibition of ERK 1/2 leads to the repression of MMP-1 transcription, and that both the 2G polymorphism and the adjacent AP-1 site at -1602 bp are necessary for high levels of MMP-1 transcription and for the inhibition of MMP-1 expression by PD098059, a specific ERK inhibitor. Furthermore, restoration of MMP-1 levels after ERK 1/2 inhibition requires de novo protein synthesis of a factor necessary for MMP-1 expression. Thus, this study suggests that the ERK 1/2 pathway targets the 2G polymorphism, and that the continuous synthesis of a protein(s) is necessary for the constitutive expression of MMP-1. (C) 2002 Published by Elsevier Science B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available