4.6 Article

Phosphorylation of p27Kip1 on serine 10 is required for its binding to CRM1 and nuclear export

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 277, Issue 17, Pages 14355-14358

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.C100762200

Keywords

-

Ask authors/readers for more resources

Phosphorylation of the cyclin-dependent kinase inhibitor p27(Kip1) has been thought to regulate its stability. Ser(10) is the major phosphorylation site of p27(Kip1), and phosphorylation of this residue affects protein stability. Phosphorylation of p27(Kip1) on Ser(10) has now been shown to be required for the binding of CRM1, a carrier protein for nuclear export. The p27(Kip1) protein was translocated from the nucleus to the cytoplasm at the Go-G, transition of the cell cycle, and this export was inhibited by leptomycin B, a specific inhibitor of CRM1-dependent nuclear export. The nuclear export and subsequent degradation of p27(Kip1) at the Go-G, transition were observed in cells lacking Skp2, the F-box protein component of an SCF ubiquitin ligase complex, indicating that these early events are independent of Skp2-mediated proteolysis. Substitution of Ser(10) with Ala (S10A) markedly reduced the extent of p27(Kip1) export, whereas substitution of Ser(10) with Asp (S10D) or Glu (S10E) promoted export. Co-immunoprecipitation analysis showed that CRM1 preferentially interacted with S10D and S10E but not with S10A, suggesting that the phosphorylation of p27(Kip1) on Ser(10) is required for its binding to CRM1 and for its subsequent nuclear export.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available