4.7 Article

Trafficking mechanism of West Nile (Sarafend) virus structural proteins

Journal

JOURNAL OF MEDICAL VIROLOGY
Volume 67, Issue 1, Pages 127-136

Publisher

WILEY-LISS
DOI: 10.1002/jmv.2201

Keywords

flavivirus; microtubules; immunofluorescence; immuno-gold-labelling; kinesin

Categories

Ask authors/readers for more resources

Previous studies have shown that West Nile (Sarafend) virus matured by budding at the plasma membrane, which differs from the usual intracellular maturation of other flaviviruses. The present study investigated the trafficking mechanism of the envelope (E) and capsid (C) proteins of West Nile (Sarafend) virus during the replication cycle. The use of time-based double-immunofluorescence labelling coupled with the Triton X-100 extraction procedure revealed that both the E and C proteins were transported from the perinuclear region towards the plasma membrane along the microtubules simultaneously. The strong association of these virus proteins with the microtubules was demonstrated further with Triton X-100 extraction procedure coupled with double immunogold-labelling. Extraction of infected cells with Triton X-100 in high salt also revealed that virus E proteins were associated with the microtubules via protein-protein interaction. The disruption of microtubules with vinblastine sulphate inhibited the trafficking of both the virus E and C proteins. Both virus structural proteins were observed to co-localise and retained within vinblastine sulphate-induced microtubulin paracrystals. Extracellular virus production was also reduced drastically by vinblastine sulphate at non-cytotoxic concentration. Subsequent studies revealed that the transportation of virus E protein was associated with the microtubules-based motor protein, kinesin. (C) 2002 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available