4.0 Article

Cave invertebrate assemblages differ between native and exotic leaf litter

Journal

AUSTRAL ECOLOGY
Volume 33, Issue 3, Pages 271-277

Publisher

WILEY-BLACKWELL
DOI: 10.1111/j.1442-9993.2007.01814.x

Keywords

cave fauna; exotic species; invertebrates; Jenolan Caves; leaf litter; litter decomposition; troglobites

Categories

Ask authors/readers for more resources

Allochtonous leaf litter is an important source of energy and nutrients for invertebrates in cave ecosystems. A change to the quality or quantity of litter entering caves has the potential to disrupt the structure and function of cave communities. In this study, we adopted an experimental approach to examine rates of leaf litter decomposition and the invertebrate assemblages colonizing native and exotic leaf litter in limestone caves in the Jenolan Caves Karst Conservation Reserve, New South Wales, Australia. We deployed traps containing leaf litter from exotic sycamore (Acer pseudoplatanus) and radiata pine (Pinus radiata) trees and native eucalypts (Eucalyptus spp.) in twilight zones (near the cave entrance) and areas deep within the caves for 3 months. Thirty-two invertebrate morphospecies were recorded from the litter traps, with greater richness and abundance evident in the samples from the twilight zone compared with areas deep within the cave. Sycamore litter had significantly greater richness and abundance of invertebrates compared with eucalypt and pine litter in samples from the twilight zone, but there was no difference in richness or abundance among litter samples placed deep within the cave. Relative rates of decay of the three litters were sycamore > eucalypt > pine. We discuss the potential for the higher decomposition rates and specific leaf area in sycamores to explain their higher invertebrate diversity and abundance. Our findings have important implications for the management of exotic plants and the contribution of their leaf litter to subterranean ecosystems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available