4.7 Article

Ionic transport in amorphous anodic titania stabilised by incorporation of silicon species

Journal

CORROSION SCIENCE
Volume 44, Issue 5, Pages 1047-1055

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0010-938X(01)00111-1

Keywords

titanium (A); anodic films (C); titania; anodising; silicon; ionic transport

Ask authors/readers for more resources

Incorporation of silicon species from an alloy substrate into anodic titania is shown to stabilise the structure of the film, facilitating investigation of the ionic transport processes in amorphous titania grown at high efficiency. Thus, an amorphous anodic film developed on a sputtering-deposited Ti-6 at.%Si alloy formed to 100 V in phosphoric acid electrolyte in contrast to a partially crystalline film developed on relatively pure titanium at <20 V. Silicon species, which are immobile and act as marker species in the growing film, are present in the inner 58% of the film thickness. Evidently, the film material forms simultaneously at the film/electrolyte and alloy/film interfaces by co-operative transport of cations and anions, as is usual in amorphous anodic oxides. The phosphate anions incorporated from the electrolyte migrate inward at 0.34 times the rate of O2- ions and hence are present in the outer 62% of the film thickness. (C) 2002 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available