4.8 Article

Porous calcium polyphosphate scaffolds for bone substitute applications in vivo studies

Journal

BIOMATERIALS
Volume 23, Issue 9, Pages 2063-2070

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/S0142-9612(01)00336-2

Keywords

calcium polyphosphate; bone ingrowth; rabbit model; particle size; in vivo degradation

Ask authors/readers for more resources

Porous rods (6 mm in length and 4 mm in diameter) of calcium polyphosphate (CPP) made by gravity sintering of particles in the size ranges of 45-105, 105-150, and 150 250 mum and with initial volume percent porosity in the range of 35-45% were implanted in the distal femur of New Zealand white rabbits. In an initial experiment, four rabbits implanted with rods made from coarse particles (150 250 mum) were sacrificed at each of the following time points: 2 days, 2 weeks, 6 weeks and 12 weeks. In a subsequent experiment, 10 rabbits were implanted with rods made by sintering 45-105 mum particles and another 10 were made by using particles of 105-150 mum, These rabbits were sacrificed at 6 weeks (five rabbits) and 1 year (five rabbits). No adverse reaction was found histologically at any time point in either experiment. These experiments show that CPP macroporous rods can support bone ingrowth and that between 12 weeks and I year, the amount of bones formed is equivalent to the natural bone volume found at similar sites. The degradation of the CPP material is inversely proportional to the original particle size and is rapid initially (within the first 6 weeks) and slows down thereafter. In conclusion, this material seems to promote rapid bone ingrowth and can be tailored to degrade at a given rate in vivo to sonic degree through appropriate selection of the starting particle size. (C) 2002 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available