4.5 Article

Tensile modulus of polymer nanocomposites

Journal

POLYMER ENGINEERING AND SCIENCE
Volume 42, Issue 5, Pages 983-993

Publisher

SOC PLASTICS ENG INC
DOI: 10.1002/pen.11007

Keywords

-

Ask authors/readers for more resources

Based on Takayanagi's two-phase model, a three-phase model including the matrix, interfacial region, and fillers is proposed to calculate the tensile modulus of polymer nanocomposites (E-c). In this model, fillers (sphere-, cylinder- or plate-shape) are randomly distributed in a matrix. If the particulate size is in the range of nanometers, the interfacial region will play an important role in the modulus of the composites. Important system parameters include the dispersed particle size (t), shape, thickness of the interfacial region (tau), particulate-to-matrix modulus ratio (E-d/E-m), and a parameter (k) describing a linear gradient change in modulus between the matrix and the surface of particle on the modulus of nanocomposites (E-c). The effects of these parameters are discussed using theoretical calculation and nylon 6/montmorillonite nanocomposite experiments. The former three factors exhibit dominant influence on E-c At a fixed volume fraction of the dispersed phase, smaller particles provide an increasing modulus for the resulting composite, as compared to the larger one because the interfacial region greatly affects E-c. Moreover, since the size of fillers is in the scale of micrometers, the influence of interfacial region is neglected and the deduced equation is reduced to Takayanagi's model. The curves predicted by the three-phase model are in good agreement with experimental results. The percolation concept and theory are also applied to analyze and interpret the experimental results.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available