4.7 Article

The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana, required for formation of a symmetric flat leaf lamina, encodes a member of a novel family of proteins characterized by cysteine repeats and a leucine zipper

Journal

PLANT AND CELL PHYSIOLOGY
Volume 43, Issue 5, Pages 467-478

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/pcp/pcf077

Keywords

Arabidopsis thaliana; ASYMMETRIC LEAVES2; C-motif; knox; leaf development; leucine zipper

Ask authors/readers for more resources

The ASYMMETRIC LEAVES2 (AS2) gene of Arabidopsis thaliana is involved in the establishment of the leaf venation system, which includes the prominent mid-vein, as well as in the development of a symmetric lamina. The gene product also represses the expression of class 1 knox homeobox genes in leaves. We have characterized the AS2 gene, which appears to encode a novel protein with cysteine repeats (designated the C-motif) and a leucine-zipper-like sequence in the amino-terminal half of the primary sequence. The Arabidopsis genome contains 42 putative genes that potentially encode proteins with conserved amino acid sequences that include the C-motif and the leucine-zipper-like sequence in the amino-terminal half. Thus, the AS2 protein belongs to a novel family of proteins that we have designated the AS2 family. Members of this family except AS2 also have been designated ASLs (AS2-like proteins). Transcripts of AS2 were detected mainly in adaxial domains of cotyledonary primordia. Green fluorescent protein-fused AS2 was concentrated in plant cell nuclei. Overexpression of AS2 cDNA in transgenic Arabidopsis plants resulted in upwardly curled leaves, which differed markedly from the downwardly curled leaves generated by loss-of-function mutation of AS2. Our results suggest that AS2 functions in the transcription of a certain gene(s) in plant nuclei and thereby controls the formation of a symmetric flat leaf lamina and the establishment of a prominent mid-vein and other patterns of venation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available