4.3 Article

Glass forming ability and crystallization behavior in amorphous Ti50Cu32-xNi15Sn3Bex (x = 0, 1, 3, 7) alloys

Journal

MATERIALS TRANSACTIONS
Volume 43, Issue 5, Pages 1243-1246

Publisher

JAPAN INST METALS
DOI: 10.2320/matertrans.43.1243

Keywords

titanium-nickel-copper-tin (beryllium) alloy; nanocrystalline; thermal stability; crystallization behavior

Ask authors/readers for more resources

The thermal stability and crystallization behavior of melt spun Ti50Cu32-xNi15Sn3Bex (x = 0, 1, 3, 7) amorphous alloys were investigated by differential scanning calorimetry (DSC), X-ray diffractometry(XRD) and transmission electron microscopy (TEM). With increasing Be content, x from 0 to 7, DeltaT(x) gradually decreased from 73 to 45 K, but T-g increased from 0.53 to 0.57. With increasing Be content, crystallization behavior changes from two exothermic events (x = 0, 1) to three exothermic events (x = 3, 7). Amorphous Ti50Cu32Ni15Sn3 phase crystallizes by transforming into Ti(Ni,Cu) and Ti2Ni phases, followed by transformation into a mixture of Ti(Ni,Cu), TiCu, and Ti3Sn phases. Amorphous Ti50Cu25Ni15Sn3Be7 phase crystallizes by precipitation of a few nanometer scale crystalline phase followed by decomposition into a mixture of Ti(Ni,Cu), TiCu, Ti3Sn and TiBe12 phases at high temperature. Partial replacement of Cu by Be in Ti-Cu-Ni-Sn alloy improved the glass forming ability. A fully amorphous rod of the Ti50Cu25Ni15Sn3Be7 alloy with a diameter of 2 turn was fabricated by injection casting.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available