4.6 Article

Connective tissue growth factor increased by hypoxia may initiate angiogenesis in collaboration with matrix metalloproteinases

Journal

CARCINOGENESIS
Volume 23, Issue 5, Pages 769-776

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/carcin/23.5.769

Keywords

-

Categories

Ask authors/readers for more resources

Connective tissue growth factor (CTGF) is known to be a potent angiogenic factor. Here we investigated how CTGF and matrix metalloproteinases (MMPs) are involved in the early stage of hypoxia-induced angiogenesis using human breast cancer cell line, MDA231, and vascular endothelial cells. Hypoxic stimulation (5% O-2) of MDA231 cells increased their steady-state level of ctgf mRNA by similar to2-fold within 1.5 h, and the levels remained at a plateau up to 6 h, and then decreased by 12 h as compared with the cells cultured under the normoxic condition. Membrane-type 1 MMP (MT1-MMP) mRNA levels was also increased within a few hours of the exposure to hypoxia. Indeed, ELISA revealed that the CTGF protein/cell in medium conditioned by MDA231 cells exposed to hypoxia was maximally greater at 24 h than in the medium from normoxic cultures and that the secretion rate (supernatant CTGF/cell layer CTGF) increased in a time-dependent manner from 24 to 72 h of hypoxic exposure. Hypoxic induction of CTGF was also confirmed by immunohistochemical analyses. Furthermore, zymogram analysis revealed that the production of active MMP-9 was also induced in MDA231 cells incubated under hypoxic conditions. Finally, we found that recombinant CTGF also increased the expression of a number of metalloproteinases that play a role in the vascular invasive processes and decreased the expression of tissue inhibitors of metalloproteinases by vascular endothelial cells. These findings suggest that hypoxia stimulates MDA231 cells to release CTGF as an angiogenic modulator, which initiates the invasive angiogenesis cascade by modulating the balance of extracellular matrix synthesis and degradation via MMPs secreted by endothelial cells in response to CTGF. This cascade may play critical roles in the hypoxia-induced neovascularization that accompanies tumor invasion in vivo.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available