4.6 Article

A Ca2+-inhibited non-selective cation conductance contributes to pacemaker currents in mouse interstitial cell of Cajal

Journal

JOURNAL OF PHYSIOLOGY-LONDON
Volume 540, Issue 3, Pages 803-814

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1113/jphysiol.2001.014639

Keywords

-

Funding

  1. NIDDK NIH HHS [DK41315, P01 DK041315] Funding Source: Medline

Ask authors/readers for more resources

Interstitial cells of Cajal (ICC) provide pacemaker activity in some smooth muscles. The nature of the pacemaker conductance is unclear, but studies suggest that pacemaker activity is due to a voltage-independent, Ca2+-regulated, non-selective cation conductance. We investigated Ca2+-regulated conductances in murine intestinal ICC and found that reducing cytoplasmic Ca2+- activates whole-cell inward currents and single-channel currents. Both the whole-cell currents and single-channel currents reversed at 0 mV when the equilibrium potentials of all ions present were far from 0 mV. Recordings from on-cell patches revealed oscillations in unitary currents at the frequency of pacemaker currents in ICC. Voltage-clamping cells to -60 mV did not change the oscillatory activity of channels in on-cell patches. Depolarizing cells with high external K+ caused loss of resolvable single-channel currents, but the oscillatory single-channel currents were restored when the patches were stepped to negative potentials. Unitary currents were also resolved in excised patches. The single-channel conductance was 13 pS, and currents reversed at 0 mV. The channels responsible were strongly activated by 10(-7) M Ca2+, and 10(-6) M Ca2+ reduced activity. The 13 pS channels were strongly activated by the calmodulin inhibitors calmidazolium and W-7 in on-cell and excised patches. Calmidazolium and W-7 also activated a persistent inward current under whole-cell conditions. Murine ICC express Ca2+-inhibited, non-selective cation channels that are periodically activated at the same frequency as pacemaker currents. This conductance may contribute to the pacemaker current and generation of electrical slow waves in GI muscles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available