4.6 Article

Vibration control of a suspension system via a magnetorheological fluid damper

Journal

JOURNAL OF VIBRATION AND CONTROL
Volume 8, Issue 4, Pages 527-547

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/107754602023712

Keywords

vibration control; magnetorheological damper; semi-active; sliding mode

Ask authors/readers for more resources

Semi-active control systems are becoming more popular because they offer both the reliability of passive systems and the versatility of active control without imposing heavy power demands. It has been found that magneto-rheological (MR) fluids can be designed to be very effective vibration control actuators. The MR fluid damper is a semi-active control device that uses MR fluids to produce a controllable damping force. The objective of this paper is to study a single-degree-of-freedom suspension system with an MR fluid damper for the purpose of vibration control. A mathematical model for the MR fluid damper is adopted. The model is compared with experimental results for a prototype damper through finding suitable model parameters. In this study, a sliding mode controller is developed by considering loading uncertainty to result in a robust control system. Two kinds of excitations are inputted in order to investigate the performance of the suspension system. The vibration responses are evaluated in both time and frequency domains. Compared to the passive system, the acceleration of the sprung mass is significantly reduced for the system with a controlled MR damper. Under random excitation, the ability of the MR fluid damper to reduce both peak response and root-mean-square response is also shown.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available