4.8 Article

The yeast CDK inhibitor Sic1 prevents genomic instability by promoting replication origin licensing in late G1

Journal

MOLECULAR CELL
Volume 9, Issue 5, Pages 1067-1078

Publisher

CELL PRESS
DOI: 10.1016/S1097-2765(02)00513-0

Keywords

-

Ask authors/readers for more resources

G(1) cell cycle regulators are often mutated in cancer, but how this causes genomic instability is unclear. Here we show that yeast lacking the CDK inhibitor Sic1 initiate DNA replication from fewer origins, have an extended S phase, and inefficiently separate sister chromatids during anaphase. This leads to double-strand breaks (DSBs) in a fraction of sic1 cells as evidenced by the accumulation of Ddc1 foci and a 575-fold increase in gross chromosomal rearrangements. Both S and M phase defects are rescued by delaying S-CDK activation, indicating that Sic1 promotes origin licensing in late G(1) by preventing the untimely activation of CDKs. We propose that precocious CDK activation causes genomic instability by altering the dynamics of S phase, which then hinders normal chromosome segregation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available