4.7 Article

Hybrid genetic algorithm and simulated annealing approach for the optimization of process plans for prismatic parts

Journal

INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH
Volume 40, Issue 8, Pages 1899-1922

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/00207540110119991

Keywords

-

Ask authors/readers for more resources

For a CAPP system in a dynamic workshop environment, the activities of selecting machining resources, determining set-up plans and sequencing machining operations should be considered simultaneously to achieve the global lowest machining cost. Optimizing process plans for a prismatic part usually suffer from complex technological requirements and geometric relationships between features in the part. Here, process planning is modelled as a combinatorial optimization problem with constraints, and a hybrid genetic algorithm (GA) and simulated annealing (SA) approach has been developed to solve it. The evaluation criterion of machining cost comes from the combined strengths of machine costs, cutting tool costs, machine changes, tool changes and set-ups. The GA is carried out in the first stage to generate some initially good process plans. Based on a few selective plans with Hamming distances between each other, the SA algorithm is employed to search for alternative optimal or near-optimal process plans. In the GA and SA algorithms, some preliminarily defined precedence constraints between features and operations are manipulated. A case study and the comparisons with the single GA and SA approaches show that this hybrid approach can achieve highly satisfactory results.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available