4.7 Article

The effect of cell division on the cellular dynamics of microinjected DNA and dextran

Journal

MOLECULAR THERAPY
Volume 5, Issue 5, Pages 579-588

Publisher

CELL PRESS
DOI: 10.1006/mthe.2002.0581

Keywords

gene therapy; gene delivery; gene expression; nonviral vectors; plasmid DNA; mitosis; nuclear transport; fluorescent microscopy

Ask authors/readers for more resources

Gene delivery is a multistep process that is being studied to increase its efficiency, a major hurdle for effective gene therapy. Our study focused on the nuclear entry step by microinjecting a mixture of fluorescent dextran and the pEYFP-Nuc plasmid (encoding a nuclear-targeted, enhanced GFP) into the cytoplasm of nondividing and dividing cells that were selected using non-chemical means. After 10 and 1000 ng/mul of plasmid DNA (pDNA) were cytoplasmically injected, 28% and 50% of the cells that had not divided expressed GFP, respectively, compared with 50% and 90% for the cells that had divided. This result suggested that pDNA can enter the nonmitotic nuclei of mononucleated cells, albeit at a lower efficiency than mitotic nuclei. The ability of pDNA to enter the intact nuclei of nondividing cells is consistent with our previous experience using multinucleated myotubes and digitonin-permeabilized cells in culture and using intravascular naked pDNA delivery in vivo. An explanation for the small effect of cell division was provided by studies using fluorescently labeled molecules and confocal fluorescent microscopy. They showed that the bulk of large dextran, and similarly pDNA, was excluded from re-formed nuclei after mitosis, thereby limiting the effect of cell division on the nuclear entry of pDNA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available