4.5 Article

Proteasomal degradation of human peptidyl prolyl isomerase Pin1-pointing phospho Bcl2 toward dephosphorylation

Journal

NEOPLASIA
Volume 4, Issue 3, Pages 218-227

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1038/sj.neo.7900233

Keywords

apoptosis; Bcl2; phosphorylation; Pin1; proteasomes

Categories

Funding

  1. NCI NIH HHS [CA 77328, R01 CA077328] Funding Source: Medline

Ask authors/readers for more resources

Microtubule inhibitor-induced Bcl2 phosphorylation is detrimental to its antiapoptotic function. Phosphorylation of Bcl2 predominantly occurs on two serine residues (70 and 87) in cells arrested at G2-M phase by microtubule disarraying agents. Phospho Bcl2 can associate with a cis-trans peptidyl prolyl isomerase, Pin1. Pin1 and its homologues are known to target the proline residue carboxyl terminal to the phosphorylated threonine or serine residue of mitotic phosphoproteins, such as Bcl2. However, it was not clear how an extranuclear protein could associate with nuclear Pin1. The confocal images of the immunofluorescence studies employing phospho Bcl2-specific antibody developed in the laboratory demonstrated the translocation of phospho Bcl2 inside the nucleus. Interestingly, proteasomal degradation of Pin1 facilitates dephosphorylation of phospho Bcl2 due to longer exposure of Taxol. Here we show for the first time that proteasomal degradation of Pin1 is the key factor to determine the fate of phosphoforms of Bcl2. When Pin1 is degraded by proteasomes, phospho Bcl2 is converted to its native form. Thus, transient conformational change of Bcl2 due to association with peptidyl prolyl isomerase can contribute to irreversible apoptotic signaling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available