4.5 Article

Formulation of a soil-pesticide transport model based on a compartmental approach

Journal

JOURNAL OF CONTAMINANT HYDROLOGY
Volume 56, Issue 1-2, Pages 1-24

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0169-7722(01)00201-7

Keywords

pesticide transport; soil; compartmental model; sorption kinetics

Ask authors/readers for more resources

A semianalytical soil-pesticide transport model is formulated based on a compartmental approach to determine spatial and temporal variations of pesticide residues across a soil profile. The compartmental model is implemented by drawing an analogy between a series of continuous-flow stirred tank reactors and a soil horizon that consists of multiple perfectly mixed compartments. The analogy is strengthened by exploiting a relation between the compartment series and the conventional convective-dispersive equation (CDE) for vertical transport in the soil. Consequently, the number of compartments in the model formulation is not free, but dictated as a function of transport parameters. The model formulation allows consideration of arbitrary boundary value specifications and also, for some cases, spatially varying initial concentration profiles. Sorption kinetics is represented via a two-site model that involves a linear sorption isotherm and a first-order irreversible sorption or a radial diffusive penetrating model. For these three cases, analysis of the compartmental model allows the resultant concentration profiles to be expressed in terms of the Poisson distribution. When a nonlinear kinetic sorption model is used to simulate the sorption processes, an analytical solution is not found and a numerical approach is required. (C) 2002 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available