4.7 Article

Spontaneous insertion and partitioning of alkaline phosphatase into model lipid rafts

Journal

EMBO REPORTS
Volume 3, Issue 5, Pages 485-490

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1093/embo-reports/kvf096

Keywords

-

Ask authors/readers for more resources

Several cell surface eukaryotic proteins have a glycosyl-phosphatidylinositol (GPI) modification at the C-terminal end that serves as an anchor to the plasma membrane and could be responsible for the presence of GPI proteins in rafts, a type of functionally important membrane microdomain enriched in sphingolipids and cholesterol. In order to understand better how GPI proteins partition into rafts, the insertion of the GPI-anchored alkaline phosphatase (AP) was studied in real-time using atomic force microscopy. Supported phospholipid bilayers made of a mixture of sphingomyelin-dioleoylphosphaticlylcholine containing cholesterol (Chl+) or not (Chl-) were used to mimic the fluid-ordered lipid phase separation in biological membranes. Spontaneous insertion of AP through its GPI anchor was observed inside both Chl+ and Chl- lipid ordered domains, but AP insertion was markedly increased by the presence of cholesterol.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available