3.8 Article

An empirical comparison of kriging methods for nonlinear spatial point prediction

Journal

MATHEMATICAL GEOLOGY
Volume 34, Issue 4, Pages 365-386

Publisher

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1023/A:1015085810154

Keywords

nonlinear kriging; parameter uncertainty; precision; validation

Ask authors/readers for more resources

Spatial prediction is a problem common to many disciplines. A simple application is the mapping of an attribute recorded at a set of points. Frequently a nonlinear functional of the observed variable is of interest, and this calls for nonlinear approaches to prediction. Nonlinear kriging methods, developed in recent years, endeavour to do so and additionally provide estimates of the distribution of the target quantity conditional on the observations. There are few empirical studies that validate the various forms of nonlinear kriging. This study compares linear and nonlinear kriging methods with respect to precision and their success in modelling prediction uncertainty. The methods were applied to a data set giving measurements of the topsoil concentrations of cobalt and copper at more than 3000 locations in the Border Region of Scotland. The data stem from a survey undertaken to identify places where these trace elements are deficient for livestock. The comparison was carried out by dividing the data set into calibration and validation sets. No clear differences between the precision of ordinary, lognormal, disjunctive, indicator, and model-based kriging were found, neither for linear nor for nonlinear target quantities. Linear kriging, supplemented with the assumption of normally distributed prediction errors, failed to model the conditional distribution of the marginally skewed data, whereas the nonlinear methods modelled the conditional distributions almost equally well. In our study the plug-in methods did not fare any worse than model-based kriging, which takes parameter uncertainty into account.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available