4.7 Article

Isolation and characterization of a putative transducer of endoplasmic reticulum stress in Oryza sativa

Journal

PLANT AND CELL PHYSIOLOGY
Volume 43, Issue 5, Pages 532-539

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/pcp/pcf063

Keywords

chaperone; endoplasmic reticulum; Oryza sativa; unfolded protein response

Ask authors/readers for more resources

Following endoplasmic reticulum (ER) stress that prevents correct folding or assembly of ER proteins, at least three responses occur to maintain cell homeostasis: induction of chaperones, attenuation of protein synthesis, and enhancement of lipid synthesis. Transducers that transmit ER stress to the nucleus have already been identified in yeast and mammals. We report here isolation of a cDNA, OsIrel, from rice encoding a putative homolog of Ire1p, a yeast transducer of ER stress. OsIrel encodes a polypeptide consisting of 893 amino acids, in which two hydrophobic stretches are present in the amino-terminal (N-terminal) and middle regions, possibly serving as a signal peptide and a transmembrane domain, respectively. The carboxyl-terminal (C-terminal) domain was found to possess serine/threonine protein kinase and ribonuclease-like domains showing high similarities with regions in Ire1 homologs from other organisms. A fusion protein of OsIre1 and green fluorescent protein (GFP) expressed in tobacco BY2 cells could be demonstrated to localize to the ER and the N-terminal domain of OsIre1 could substitute for yeast Ire1p in yeast cells. When produced in bacteria as a fusion protein, the C-terminal region of OsIre1 showed autophosphorylation activity. These results thus indicate that OsIrel encodes a putative plant transducer of ER stress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available