4.6 Article

Sodium arsenite administration via drinking water increases genome-wide and Ha-ras DNA hypomethylation in methyl-deficient C57BL/6J mice

Journal

CARCINOGENESIS
Volume 23, Issue 5, Pages 777-785

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/carcin/23.5.777

Keywords

-

Categories

Funding

  1. NIEHS NIH HHS [5P30ES07048-06] Funding Source: Medline

Ask authors/readers for more resources

Arsenic is an established human carcinogen. Deficiencies in available animal models have inhibited a detailed analysis of the mechanism of arsenic induced cancer. This study sought to determine the role of a methyl-deficient diet in combination with sodium arsenite on the genomic methylation status and Ha-ras methylation status of C57BL/ 6J male mice hepatic DNA. Mice were administered arsenic as sodium arsenite via drinking water at 0, 2.6, 4.3, 9.5 or 14.6 mg sodium arsenite/kg/day. Administration occurred 7 days a week for 130 days. Dose-related effects on the liver were evident in mice administered arsenic and methyl-deficient diets. Most prominent were observations of steatosis and microgranulomas. Sodium arsenite increased genomic hypomethylation in a dose dependent manner and methyl-deficiency and sodium arsenite reduced the frequency of methylation at several cytosine sites within the promoter region of the oncogenic gene, Ha-ras. Methylation changes were prominent in a 500 by non-CpG island-like region of the Ha-ras promoter and less prominent in a 525 by CpG island-like region. DNA methylation plays an important role in the physiological expression of many genes including Ha-ras. Significantly reduced methylation at a key regulatory region of Ha-ras in the mouse liver may have relevance to understanding arsenic-induced perturbations in the methylation patterns of cellular growth genes involved in the formation of tumors. These findings highlight the effect of sodium arsenite on inherent methylation processes within the hepatic cell.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available