3.8 Article

Differential Shannon entropy analysis identifies molecular property descriptors that predict aqueous solubility of synthetic compounds with high accuracy in binary QSAR calculations

Ask authors/readers for more resources

Prediction of aqueous solubility of organic molecules by binary QSAR was used as a test case for a recently introduced entropy-based descriptor selection method. Property descriptors suitable for solubility prediction's were exclusively selected on the basis of Shannon entropy calculations in molecular learning sets, not taking any other information into account. Sets of only five or 10 2D descriptors with largest entropy differences between molecules above or below a defined solubility threshold yielded consistently high prediction accuracy between 80% and 90% in binary QSAR calculations. regardless of the threshold values applied. The to p five descriptors with largest differential Shannon entropy (DSE) values achieved an average prediction accuracy of 88%. These findings suggest that differences in entropy and relative information content of descriptors in compared compound data sets correlate with significant differences in physical properties and support the practical relevance of entropy-based descriptor selection routines. The study also demonstrates that binary QSAR methodology can be effectively used to classify small molecules according to aqueous solubility.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available