4.7 Article

N-linked glycosylation is critical for the plasma membrane localization of nephrin

Journal

Publisher

AMER SOC NEPHROLOGY
DOI: 10.1097/01.ASN.0000013297.11876.5B

Keywords

-

Funding

  1. NIDDK NIH HHS [DK 54724] Funding Source: Medline

Ask authors/readers for more resources

The expression pattern, subcellular localization, and the role of glycosylation of the human nephrin was examined in transfected cells. Stable cell lines, constitutively expressing a full-length human nephrin cDNA construct, were generated from transfected immortalized mouse podocytes (IMP) and a human embryonic kidney cell line (HEK-293). Immunofluorescence confocal microscopy of transfected cells showed plasma membrane localization of the recombinant nephrin. Immunoblotting showed that the recombinant nephrin expressed in transfected cell lines migrated as a double band with a molecular weight of 185 kD. When cells were treated with the N-glycosylation inhibitor, tunicamycin, the molecular weight of nephrin was decreased to a single immunoband of 150 kD, indicating that the shift in the electrophoretic migration of nephrin is due to N-linked carbohydrate moieties. It was further shown that this glycosylation process is highly sensitive to inhibition by tunicamycin, which is a naturally occurring antibiotic, leading to retention of nonglycosylated nephrin molecules in the endoplasmic reticulum. It was concluded that N-glycosylation of nephrin is crucial for its proper folding and thereby plasma membrane localization therefore, inhibition of this process might be an important factor in the onset of pathogenesis of some acquired glomerular diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available