4.7 Review

The global distribution of mineral dust and its impacts on the climate system: A review

Journal

ATMOSPHERIC RESEARCH
Volume 138, Issue -, Pages 152-165

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.atmosres.2013.11.007

Keywords

Mineral dust aerosols; Radiative forcing; Semi-directly; Indirect effect; Climate system; Cloud microphysics

Funding

  1. Foundation for Research, Science and Technology
  2. National Institute for Water and Atmospheric Research (New Zealand)

Ask authors/readers for more resources

Mineral dust aerosols, the tiny soil particles suspended in the atmosphere, have a key role in the atmospheric radiation budget and hydrological cycle through their radiative and cloud condensation nucleus effects. Current understanding of spatial and temporal variations of mineral dust, as well as its impacts on the climate system and cloud properties is outlined. Mineral dust aerosols are blown into the atmosphere mainly from arid and semi-arid regions where annual rainfall is extremely low and substantial amounts of alluvial sediment have been accumulated over long periods. They are subject to long-range transport of an intercontinental scale, including North African dust plumes over the Atlantic Ocean, summer dust plumes from the Arabian Peninsula over the Arabian Sea and Indian Ocean and spring dust plumes from East Asia over the Pacific Ocean. Mineral dust aerosols influence the climate system and cloud microphysics in multiple ways. They disturb the climate system directly by scattering and partly absorbing shortwave and longwave radiation, semi-directly by changing the atmospheric cloud cover through evaporation of cloud droplets (i.e. the cloud burning effect), and indirectly by acting as cloud and ice condensation nuclei, which changes the optical properties of clouds (i.e. the first indirect effect), and may decrease or increase precipitation formation (i.e. the second indirect effect). Radiative forcing by mineral dust is associated with changes in atmospheric dynamics that may change the vertical profile of temperature and wind speed, through which a feedback effect on dust emission can be established. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available