4.8 Article

Visible reflectance hyperspectral imaging: Characterization of a noninvasive, in vivo system for determining tissue perfusion

Journal

ANALYTICAL CHEMISTRY
Volume 74, Issue 9, Pages 2021-2028

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac011275f

Keywords

-

Ask authors/readers for more resources

We characterize a visible reflectance hyperspectral imaging system for noninvasive, in vivo, quantitative analysis of human tissue in a clinical environment. The subject area is illuminated with a quartz-tungsten-halogen light source, and the reflected light is spectrally discriminated by a liquid crystal tunable filter (LCTF) and imaged onto a silicon charge-coupled device detector. The LCTF is continuously tunable within its useful visible spectral range (525-725 nm) with an average spectral full width at half-height bandwidth of 0.38 nm and an average transmittance of 10.0%. A standard resolution target placed 5.5 ft from the system results in a field of view with a 17-cm diameter and an optimal spatial resolution of 0.45 mm. The measured reflectance spectra are quantified in terms of apparent absorbance and formatted as a hyperspectral image cube. As a clinical example, we examine a model of vascular dysfunction involving both ischemia and reactive hyperemia during tissue reperfusion. In this model, spectral images, based upon oxyhemoglobin and deoxyhemoblobin signals in the 525-645-nm region, are deconvoluted using a multivariate least-squares regression analysis to visualize the spatial distribution of the percentages of oxyhemoglobin and deoxyhemoglobin in specific skin tissue areas.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available