4.8 Article

On-column ion-exchange preconcentration of inorganic anions in open tubular capillary electrochromatography with elution using transient-isotachophoretic gradients. 3. Implementation and method development

Journal

ANALYTICAL CHEMISTRY
Volume 74, Issue 9, Pages 2112-2118

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac011217u

Keywords

-

Ask authors/readers for more resources

A solid-phase extraction method based on an ion-exchange retention mechanism has been used for in-line preconcentration of inorganic anions prior to their separation by capillary electrophoresis (CE). A single capillary containing a preconcentration and a separation zone has been used in a commercial CE instrument without instrumental modification. Analyte anions were retained on a preconcentration zone comprising an adsorbed layer of cationic latex particles, while separation was achieved in a separation zone comprising fused silica modified by adsorption of a cationic polymer. Elution of the adsorbed analytes was achieved using an eluotropic gradient formed by a transient isotachophoretic boundary between a fluoride electrolyte and a naphthalenedisulfonate electrolyte. Optimization of the electrolyte concentrations, sample injection times, and back-Rushing times allowed the successful separation of sub-ppb levels of inorganic anions using a 100-min injection at 2 bar pressure, introducing over 40 capillary volumes of sample. A method based on a 10-min injection allowed a 100-fold increase in sensitivity over conventional hydrodynamic injection for Br-, I-, NO3-, CrO42-, and MoO42- with a total analysis time of 25 min. Detection limits were dependent on the injection time but were in the range 2.2-11.6 ppb for a 10-min injection time. This approach was used to determine NO3- in Antarctic ice cores where the analysis could be performed using a sample volume 100 times less than that used for ion chromatography.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available