4.0 Article

Viral interleukin-10 gene inhibition of inflammation, osteoclastogenesis, and bone resorption in response to titanium particles

Journal

ARTHRITIS AND RHEUMATISM
Volume 46, Issue 5, Pages 1298-1308

Publisher

WILEY
DOI: 10.1002/art.10227

Keywords

-

Categories

Funding

  1. NIAMS NIH HHS [AR-46545, AR-45971] Funding Source: Medline

Ask authors/readers for more resources

Objective. To evaluate the potential of viral interleukin-10 (vIL-10) gene therapy as an approach to prevent wear debris-induced inflammation, osteoclastogenesis, and bone resorption as it relates to periprosthetic osteolysis in patients with total joint replacements. Methods. Replication-defective adenovirus vectors expressing vIL-10 (AdvIL-10) or LacZ (AdLacZ) target genes were used to transduce fibroblast-like synoviocytes (FLS) in vitro, and the effects of these cells on wear debris-induced proinflammatory cytokine production and receptor activator of nuclear factor kappaB ligand + macrophage colony-stimulating factor splenocyte osteoclastogenesis were assessed by enzyme-linked immunosorbent assay and tartrate-resistant acid phosphatase assay. The effects of AdvIL-10 administration on wear debris-induced osteolysis in vivo were analyzed using the mouse calvaria model, in which AdLacZ was used as the control. Results. In the presence of AdLacZ-infected FLS, titanium particle-stimulated macrophages exhibited a marked increase in secretion of tumor necrosis factor a (TNFalpha) (6.5-fold), IL-6 (13-fold), and IL-1 (5-fold). Coculture with AdvIL-10-transduced FLS suppressed cytokine secretion to basal levels, while addition of an anti-IL-10 neutralizing antibody completely blocked this effect. The vIL-10-transduced FLS also inhibited osteoclastogenesis 10-fold in an anti-IL-10-sensitive manner. In vivo, titanium implantation resulted in a 2-fold increase in osteoclasts (P < 0.05) and in a 2-fold increase in sagittal suture area (P < 0.05). This increase over control levels was completely blocked in mice receiving intraperitoneal injections of AdvIL-10, all of whom had measurable serum vIL-10 levels for the duration of the experiment. Inummohistochemistry demonstrated reduced cyclooxygenase 2 and TNFalpha expression in AdvIL-10-infected animals. Conclusion. This study demonstrates that gene delivery of vIL-10 inhibits 3 processes critically involved in periprosthetic osteolysis: 1) wear debris-induced proinflammatory cytokine production, 2) osteoclastogenesis, and 3) osteolysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available