4.7 Article

Water-soluble ions in atmospheric aerosols measured in Xi'an, China: Seasonal variations and sources

Journal

ATMOSPHERIC RESEARCH
Volume 102, Issue 1-2, Pages 110-119

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.atmosres.2011.06.014

Keywords

Aerosols; Water-soluble ions; Seasonal variation; Source; Xi'an

Funding

  1. Natural Science Foundation of China [NSFC40925009, NSFC41073102]
  2. Chinese Academy of Sciences [0929011018, KZCX2-YW-BR-10, KZCX2-YW-148]
  3. Ministry of Science Technology [2009IM030100]
  4. National Science Foundation

Ask authors/readers for more resources

Daily PM(2.5) and water-soluble inorganic ions (Na(+), NH(4)(+), K(+), Mg(2+), Ca(2+), Cl(-), NO(3)(-) and SO(4)(2-)) were collected in Xi'an (34.23 degrees N, 108.88 degrees E), China from March 2006 to March 2007. PM(2.5) was collected using battery-powered mini-volume samplers. And the ions were determined by ion chromatography from the measured aerosol mass. The annual average mass concentration of PM(2.5) was found to be 194.1 +/- 78.6 mu g m(-3), which exceeded substantially the international guidelines for health concerns. The seasonal average mass concentration of PM(2.5) was highest in winter (266.8 mu g m(-3)) and lowest in summer (138.6 mu g m(-3)). The three highest abundant ions were SO(4)(2-), NO(3)(-), and NH(4)(-), with average concentrations of 35.6 +/- 19.5 mu g m(-3), 16.4 +/- 10.1 mu g m(-3), and 11.4 6.8 mu g m(-3), which were accounted for 18.7%, 8.0%, and 5.7% of the PM(2.5) mass, respectively. The major ions were in the species of (NH(4))(2)SO(4), NH(4)HSO(4) and NH(4)NO(3), and their concentrations were highest in winter, due to high coal combustion. The concentrations of Ca(2+) were higher in spring than other seasons, due to the higher mineral dust concentrations. Ca(2+) was strongly correlated with CO(3)(2-), which was calculated as the difference in the measured cations minus anions. Ion balance calculations indicate that the PM(2.5) was acidic, and this result is consistent with the measurement of pH values. Sulfur oxidation ratio was higher in summer and autumn, which implies that the formation of secondary sulfate-rich particles is favored by warm and relatively moist weather. Nitrogen oxidation ratio was highest in autumn. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available