4.6 Article

Effect of phosphorylation on the structure and fold of transactivation domain of p53

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 277, Issue 18, Pages 15579-15585

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M106915200

Keywords

-

Ask authors/readers for more resources

Several phosphorylations are known to occur in the N-terminal transactivation domain of human p53. To explore the structural effects of these phosphorylations, we have chemically synthesized the unphosphorylated p53-(1-39) and its three phosphorylated analogs, phosphorylated at Ser-15, Thr-18, and Ser-20. p53-(1-39) and its Ser-15 and Thr-18 phosphorylated analogs were tested for interaction with p300. The order of binding affinities was similar to that derived from biochemical experiments with the whole protein, indicating functional integrity of the domain. Differences in chemical shifts and coupling constants indicate significant structural changes upon phosphorylations. The single tryptophan in the unphosphorylated domain has an emission maximum and a Stern-Volmer constant that are characteristics of tryptophans situated in protein interiors. The diffusion constant is monomer-like, with an axial ratio of 1:7.5, indicating a significant degree of compaction. Upon phosphorylations, the emission maximum and diffusion constant change significantly toward values that indicate more open conformations. Binding of the hydrophobic probe bis-1-anilino-8-naphthalenesulfonate to the unphosphorylated and one of the phosphorylated domains is also significantly different, suggesting different conformations. We propose that phosphorylations switch the largely folded transactivation domain to more open conformations that interact with transcription factors such as p300/cAMP-responsive element-binding protein-binding protein, leading to enhancement of gene expression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available