4.6 Article

FRS2 PTB domain conformation regulates interactions with divergent neurotrophic receptors

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 277, Issue 19, Pages 17088-17094

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M107963200

Keywords

-

Funding

  1. NIGMS NIH HHS [R01 GM059432-03] Funding Source: Medline

Ask authors/readers for more resources

Membrane-anchored adaptor proteins FRS2alpha/beta (also known as SNT-1/2) mediate signaling of fibroblast growth factor receptors (FGFRs) and neurotrophin receptors (TRKs) through their N-terminal phosphotyrosine binding (PTB) domains. The FRS2 PTB domain recognizes tyrosine-phosphorylated TRKs at an NPXpY (where pY is phosphotyrosine) motif, whereas its constitutive association with FGFR involves a receptor juxtamembrane region lacking Tyr and Asn residues. Here we show by isothermal titration calorimetry that the FRS2alpha PTB domain binding to peptides derived from TRKs or FGFR is thermodynamically different. TRK binding is largely enthalpy-driven, whereas the FGFR interaction is governed by a favorable entropic contribution to the free energy of binding. Furthermore, our NMR spectral analysis suggests that disruption of an unstructured region C-terminal to the PTB domain alters local conformation and dynamics of the residues at the ligand-binding site, and that structural disruption of the beta8-strand directly weakens the PTB domain association with the FGFR ligand. Together, our new findings support a molecular mechanism by which conformational dynamics of the FRS2alpha PTB domain dictates its association with either fibroblast growth factor or neurotrophin receptors in neuronal development.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available