4.6 Article

The role of ATP hydrolysis for kinesin processivity

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 277, Issue 19, Pages 17079-17087

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M108793200

Keywords

-

Funding

  1. NIGMS NIH HHS [R01 GM054141, GM 54141] Funding Source: Medline

Ask authors/readers for more resources

Conventional kinesin is a highly processive, plus-end-directed microtubule-based motor that drives membranous organelles toward the synapse in neurons. Although recent structural, biochemical, and mechanical measurements are beginning to converge into a common view of how kinesin converts the energy from ATP turnover into motion, it remains difficult to dissect experimentally the intermolecular domain cooperativity required for kinesin processivity. We report here our pre-steady-state kinetic analysis of a kinesin switch I mutant at Arg(210) (NXXSSRSH, residues 205-212 in Drosophila kinesin). The results show that the R210A substitution results in a dimeric kinesin that is defective for ATP hydrolysis and a motor that cannot detach from the microtubule although ATP binding and microtubule association occur. We propose a mechanistic model in which ATP binding at head 1 leads to the plus-end-directed motion of the neck linker to position head 2 forward at the next microtubule binding site. However, ATP hydrolysis is required at head 1 to lock head 2 onto the microtubule in a tight binding state before head 1 dissociation from the microtubule. This mechanism optimizes forward movement and processivity by ensuring that one motor domain is tightly bound to the microtubule before the second can detach.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available