4.6 Review

Human cytomegalovirus immediate early proteins and cell growth control

Journal

GENE
Volume 290, Issue 1-2, Pages 19-34

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0378-1119(02)00566-8

Keywords

human cytomegalovirus; immediate early proteins; cell cycle; retinoblastoma; p53; apoptosis

Funding

  1. NCI NIH HHS [CA86038] Funding Source: Medline
  2. NHLBI NIH HHS [HL 10334-01] Funding Source: Medline

Ask authors/readers for more resources

It is widely accepted that small DNA tumor viruses, such as adenovirus, simian virus 40 and papillomavirus, push infected cells into S-phase to facilitate the replication of their genome. Until recently, it was believed that the large DNA viruses (i.e. herpesviruses) functioned very differently in this regard by inducing a G, arrest in infected cells as part of their replication process. However, studies over the last 6-8 years have uncovered striking parallels (and differences) between the functions of the major immediate early (IE) proteins of at least one herpesvirus, human cytomegalovirus (HCMV) and IE equivalents encoded by small DNA tumor viruses, such as adenovirus. Similarities between the HCMV major IE proteins and adenovirus IE proteins include targeting of members of the RB and p53 families and an ability of these viral factors to induce S-phase in quiescent cells. However, unlike the small DNA tumor virus proteins, individual HCMV IE proteins target different RB family members. HCNIV also encodes several other IE gene products as well as virion tegument proteins that act early during infection to prevent an infected cell from replicating its host genome and from undergoing apoptosis. Here, we review the specifics of several HCMV IE proteins, two virion components, and their functions in relation to cell growth control. (C) 2002 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available