4.5 Article

Molecular pathophysiology in Tay-Sachs and Sandhoff diseases as revealed by gene expression profiling

Journal

HUMAN MOLECULAR GENETICS
Volume 11, Issue 11, Pages 1343-1350

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/hmg/11.11.1343

Keywords

-

Ask authors/readers for more resources

Tay-Sachs and Sandhoff diseases are lysosomal storage disorders characterized by the absence of beta-hexosaminidase activity and the accumulation of GM2 ganglioside in neurons. In each disorder, a virtually identical course of neurodegeneration begins in infancy and leads to demise generally by 4-6 years of age. Through serial analysis of gene expression (SAGE), we determined gene expression profiles in cerebral cortex from a Tay-Sachs patient, a Sandhoff disease patient and a pediatric control. Examination of genes that showed altered expression in both patients revealed molecular details of the pathophysiology of the disorders relating to neuronal dysfunction and loss. A large fraction of the elevated genes in the patients could be attributed to activated macrophages/microglia and astrocytes, and included class II histocompatability antigens, the pro-inflammatory cytokine osteopontin, complement components, proteinases and inhibitors, galectins, osteonectin/SPARC, and prostaglandin D2 synthase. The results are consistent with a model of neurodegeneration that includes inflammation as a factor leading to the precipitous loss of neurons in individuals with these disorders.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available