4.8 Article

Rotavirus protein involved in genome replication and packaging exhibits a HIT-like fold

Journal

NATURE
Volume 417, Issue 6886, Pages 311-315

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/417311a

Keywords

-

Ask authors/readers for more resources

Rotavirus, the major cause of life-threatening infantile gastroenteritis, is a member of the Reoviridae(1). Although the structures of rotavirus 2 and other members of the Reoviridae(3,4) have been extensively studied, little is known about the structures of virus-encoded non-structural proteins that are essential for genome replication and packaging. The non-structural protein NSP2 of rotavirus, which exhibits nucleoside triphosphatase, single-stranded RNA binding(5), and nucleic-acid helix-destabilizing(6) activities, is a major component of viral replicase complexes(7,8). We present here the X-ray structure of the functional octamer(9) of NSP2 determined to a resolution of 2.6 Angstrom. The NSP2 monomer has two distinct domains. The amino-terminal domain has a new fold. The carboxy-terminal domain resembles the ubiquitous cellular histidine triad (HIT) group of nucleotidyl hydrolases(10). This structural similarity suggests that the nucleotide-binding site is located inside the cleft between the two domains. Prominent grooves that run diagonally across the doughnut-shaped octamer are probable locations for RNA binding. Several RNA binding sites, resulting from the quaternary organization of NSP2 monomers, may be required for the helix destabilizing activity of NSP2 and its function during genome replication and packaging.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available