4.6 Article

Wnt signaling controls the phosphorylation status of β-catenin

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 277, Issue 20, Pages 17901-17905

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M111635200

Keywords

-

Ask authors/readers for more resources

At the heart of the canonical Wnt signaling cascade, adenomatous polyposis coli (APC), axin, and GSK3 constitute the so-called destruction complex, which controls the stability of beta-catenin. It is generally believed that four conserved Ser/Thr residues in the N terminus of beta-catenin are the pivotal targets for the constitutively active serine kinase GSK3. In cells that do not receive Wnt signals, glycogen synthase kinase (GSK) is presumed to phosphorylate beta-catenin, thus marking the latter for proteasomal degradation. Wnt signaling inhibits GSK3 activity. As a consequence, beta-catenin would no longer be phosphorylated and accumulate to form nuclear complexes with TCF/LEF factors. Although mutations in or near the N-terminal Ser/Thr residues stabilize beta-catenin in several types of cancer, the hypothesis that Wnt signaling controls phosphorylation of these residues remains unproven. We have generated a monoclonal antibody that recognizes an epitope containing two of the four residues when both are not phosphorylated. The epitope is generated upon Wnt signaling as well as upon pharmacological inhibition of GSK3 by lithium, providing formal proof for the regulated phosphorylation of the Ser/Thr residues of beta-catenin by Wnt signaling. Immunohistochemical analysis of mouse embryos utilizing the antibody visualizes sites that transduce Wnt signals through the canonical Wnt cascade.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available