4.6 Review

Multiple astrocyte responses to lysophosphatidic acids

Journal

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S1388-1981(02)00150-6

Keywords

lysophosphatidic acid; astrocyte; glioma; brain

Funding

  1. NIA NIH HHS [AG15642] Funding Source: Medline

Ask authors/readers for more resources

Lysophosphatidic acid (LPA) and LPA receptors are enriched in the brain. Moreover, the levels of these receptors and ligand are modulated during brain development and injury, respectively, suggesting multiple roles for LPA in the brain. In cultured astrocytes and glioma-derived cells, LPA increases intracellular calcium concentrations and causes morphological changes, LPA also induces glioma cell migration. In normal astrocytes, LPA stimulates reactive oxygen species synthesis, activation of multiple protein kinases and expression of c-fos and c-jun. It is noteworthy that LPA-induced astrocyte responses vary as a function of the specific brain region of origin of the astrocytes. This may be one factor in the finding of LPA-stimulated proliferation in some, but not all, astrocyte studies. The species and/or developmental stage also differed in many of the astrocyte proliferation analyses. Micromolar LPA is required to elicit some astrocyte responses, including the stimulation of cytokine expression and inhibition of glutamate uptake. These events could significantly impact on survival of injured neurons and micromolar LPA concentrations are likely in diverse brain pathologies. There are important aspects of astrocyte LPA responses still to be fully evaluated, including functions in development and activation, synergy between LPA and other biomediators, and astrocyte interactions with other cells. (C) 2002 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available